396 research outputs found

    Layered crustal and mantle structure and anisotropy beneath the Afar Depression and Malawi Rift Zone

    Get PDF
    Although a wealth of geophysical data sets have been acquired within the vicinity of continental rift zones, the mechanisms responsible for the breakup of stable continental lithosphere are ambiguous. Eastern Africa is host to the largest contemporary rift zone on Earth, and is thus the most prominent site with which to investigate the processes which govern the rupture of continental lithosphere. The studies herein represent teleseismic analyses of the velocity and thermomechanical structure of the crust and mantle beneath the Afar Depression and Malawi Rift Zone (MRZ) of the East African Rift System. Within the Afar Depression, the first densely-spaced receiver function investigation of crustal thickness and inferred velocity attenuation across the Tendaho Graben is conducted, and the largest to-date study of the topography of the mantle transition zone (MTZ) beneath NE Africa is provided, which reveals low upper-mantle velocities beneath the Afar concordant with a probable mantle plume traversing the MTZ beneath the western Ethiopian Plateau. In the vicinity of the MRZ, a data set comprised of 35 seismic stations is employed that was deployed over a two year period from mid-2012 to mid-2014, belonging to the SAFARI (Seismic Arrays For African Rift Initiation) experiment. Accordingly, the first MTZ topography and shear wave splitting analyses were conducted in the region. The latter reveals largely plate motion-parallel anisotropy that is locally modulated by lithospheric thickness abnormalities adjacent to the MRZ, while the former reveals normal MTZ thicknesses and shallow discontinuities that support the presence of a thick lithospheric keel within the MRZ region. These evidences strongly argue for the evolution of the MRZ via passive rifting mechanisms absent lower-mantle influences --Abstract, page iv

    Exercise Adherence and Depression

    Get PDF
    In this study, exercise adherence levels were examined from archival data collected from 2004 to 2006 to determine if an association existed with the levels of depression among individuals over 49 in 3 rural community centers. Abundant research has shown that exercise is effective in alleviating depression but has not shown how levels of exercise adherence may impact the efficacy of exercise in the treatment of depression. The focus of the study was to determine if an increase in exercise adherence may be associated with a decrease in the symptoms of depression. An ANCOVA was used to determine if differences in levels of depression were significantly associated between low and high exercise adherence. The results did not provide evidence that a high level of exercise adherence is associated with lower symptoms of depression. An independent samples t test was used to determine if gender makes any difference in exercise adherence. The results did not provide evidence that gender made any difference in exercise adherence. An ANOVA was used to determine if the type of exercise was associated with exercise adherence. The results provided significant evidence that select exercises were adhered to more than others. A new study comparing varying levels of exercise adherence, not merely low exercise adherence and high exercise adherence, would allow for a more precise measurement of the association between exercise adherence and depression. It is hoped that providing further insight into an adjunct treatment of depression will result in an increased efficacy of treatment and a positive social change for society

    Tree Species Control Rates of Free-Living Nitrogen Fixation in a Tropical Rain Forest

    Get PDF
    Tropical rain forests represent some of the most diverse ecosystems on earth, yet mechanistic links between tree species identity and ecosystem function in these forests remains poorly understood. Here, using free-living nitrogen (N) fixation as a model, we explore the idea that interspecies variation in canopy nutrient concentrations may drive significant local-scale variation in biogeochemical processes. Biological N fixation is the largest “natural” source of newly available N to terrestrial ecosystems, and estimates suggest the highest such inputs occur in tropical ecosystems. While patterns of and controls over N fixation in these systems remain poorly known, the data we do have suggest that chemical differences among tree species canopies could affect free-living N fixation rates. In a diverse lowland rain forest in Costa Rica, we established a series of vertical, canopy-to-soil profiles for six common canopy tree species, and we measured free-living N fixation rates and multiple aspects of chemistry of live canopy leaves, senesced canopy leaves, bulk leaf litter, and soil for eight individuals of each tree species. Free-living N fixation rates varied significantly among tree species for all four components, and independent of species identity, rates of N fixation ranged by orders of magnitude along the vertical profile. Our data suggest that variations in phosphorus (P) concentration drove a significant fraction of the observed species-specific variation in free-living N fixation rates within each layer of the vertical profile. Furthermore, our data suggest significant links between canopy and forest floor nutrient concentrations; canopy P was correlated with bulk leaf litter P below individual tree crowns. Thus, canopy chemistry may affect a suite of ecosystem processes not only within the canopy itself, but at and beneath the forest floor as well

    Nitrogen Cycling Responses to Mountain Pine Beetle Disturbance in a High Elevation Whitebark Pine Ecosystem

    Get PDF
    Ecological disturbances can significantly affect biogeochemical cycles in terrestrial ecosystems, but the biogeochemical consequences of the extensive mountain pine beetle outbreak in high elevation whitebark pine (WbP) (Pinus albicaulis) ecosystems of western North America have not been previously investigated. Mountain pine beetle attack has driven widespread WbP mortality, which could drive shifts in both the pools and fluxes of nitrogen (N) within these ecosystems. Because N availability can limit forest regrowth, understanding how beetle-induced mortality affects N cycling in WbP stands may be critical to understanding the trajectory of ecosystem recovery. Thus, we measured above- and belowground N pools and fluxes for trees representing three different times since beetle attack, including unattacked trees. Litterfall N inputs were more than ten times higher under recently attacked trees compared to unattacked trees. Soil inorganic N concentrations also increased following beetle attack, potentially driven by a more than two-fold increase in ammonium (NH4+ ) concentrations in the surface soil organic horizon. However, there were no significant differences in mineral soil inorganic N or soil microbial biomass N concentrations between attacked and unattacked trees, implying that short-term changes in N cycling in response to the initial stages of WbP attack were restricted to the organic horizon. Our results suggest that while mountain pine beetle attack drives a pulse of N from the canopy to the forest floor, changes in litterfall quality and quantity do not have profound effects on soil biogeochemical cycling, at least in the short-term. However, continuous observation of these important ecosystems will be crucial to determining the long-term biogeochemical effects of mountain pine beetle outbreaks

    Nutrient Regulation of Organic Matter Decomposition in a Tropical Rain Forest

    Get PDF
    errestrial biosphere–atmosphere CO2 exchange is dominated by tropical forests, so understanding how nutrient availability affects carbon (C) decomposition in these ecosystems is central to predicting the global C cycle\u27s response to environmental change. In tropical rain forests, phosphorus (P) limitation of primary production and decomposition is believed to be widespread, but direct evidence is rare. We assessed the effects of nitrogen (N) and P fertilization on litter-layer organic matter decomposition in two neighboring tropical rain forests in southwest Costa Rica that are similar in most ways, but that differ in soil P availability. The sites contain 100–200 tree species per hectare and between species foliar nutrient content is variable. To control for this heterogeneity, we decomposed leaves collected from a widespread neotropical species, Brosimum utile. Mass loss during decomposition was rapid in both forests, with B. utile leaves losing \u3e80% of their initial mass in (DOM) rather than direct CO2 mineralization. While P fertilization did not significantly affect mass loss in the litter layer, it did stimulate P immobilization in decomposing material, leading to increased P content and a lower C:P ratio in soluble DOM. In turn, increased P content of leached DOM stimulated significant increases in microbial mineralization of DOM in P-fertilized soil. These results show that, while nutrients may not affect mass loss during decomposition in nutrient-poor, wet ecosystems, they may ultimately regulate CO2 losses (and hence C storage) by limiting microbial mineralization of DOM leached from the litter layer to soil

    Seismic Anisotropy and Mantle Dynamics Beneath the Malawi Rift Zone, East Africa

    Get PDF
    SKS, SKKS, and PKS splitting parameters measured at 34 seismic stations that we deployed in the vicinity of the Cenozoic Malawi Rift Zone (MRZ) of the East African Rift System demonstrate systematic spatial variations with an average splitting time of 1.0 ± 0.3 s. The overall NE-SW fast orientations are consistent with absolute plate motion (APM) models of the African Plate constructed under the assumption of no-net rotation of the global lithosphere and are inconsistent with predicted APM directions from models employing a fixed hot spot reference frame. They also depart considerably from the trend of most of the major tectonic features. These observations, together with the results of anisotropy depth estimation using the spatial coherency of the splitting parameters, suggest a mostly asthenospheric origin of the observed azimuthal anisotropy. The single-layered anisotropy observed at 30 and two-layered anisotropy observed at 4 of the 34 stations can be explained by APM-related simple shear within the rheologically transitional layer between the lithosphere and asthenosphere, as well as by the horizontal deflection of asthenospheric flow along the southern and western edges of a continental block with relatively thick lithosphere revealed by previous seismic tomography and receiver function investigations. This first regional-scale shear wave splitting investigation of the MRZ suggests the absence of rifting-related active mantle upwelling or small-scale mantle convection and supports a passive-rifting process for the MRZ

    The Mantle Transition Zone beneath the Afar Depression and Adjacent Regions: Implications for Mantle Plumes and Hydration

    Get PDF
    The Afar Depression and its adjacent areas are underlain by an upper mantle marked by some of the world\u27s largest negative velocity anomalies, which are frequently attributed to the thermal influences of a lower-mantle plume. In spite of numerous studies, however, the existence of a plume beneath the area remains enigmatic, partially due to inadequate quantities of broad-band seismic data and the limited vertical resolution at the mantle transition zone (MTZ) depth of the techniques employed by previous investigations. In this study, we use an unprecedented quantity (over 14 500) of P-to-S receiver functions (RFs) recorded by 139 stations from 12 networks to image the 410 and 660 km discontinuities and map the spatial variation of the thickness of the MTZ. Non-linear stacking of the RFs under a 1-D velocity model shows robust P-to-S conversions from both discontinuities, and their apparent depths indicate the presence of an upper-mantle low-velocity zone beneath the entire study area. The Afar Depression and the northern Main Ethiopian Rift are characterized by an apparent 40- 60 km depression of both MTZ discontinuities and a normal MTZ thickness. The simplest and most probable interpretation of these observations is that the apparent depressions are solely caused by velocity perturbations in the upper mantle and not by deeper processes causing temperature or hydration anomalies within the MTZ. Thickening of the MTZ on the order of 15 km beneath the southern Arabian Plate, southern Red Sea and western Gulf of Aden, which comprise the southward extension of the Afro-Arabian Dome, could reflect long-term hydration of the MTZ. A 20 km thinning of the MTZ beneath the western Ethiopian Plateau is observed and interpreted as evidence for a possible mantle plume stem originating from the lower mantle

    Agricultural Conversion Without External Water and Nutrient Inputs Reduces Terrestrial Vegetation Productivity

    Get PDF
    Driven by global population and standard of living increases, humanity co-opts a growing share of the planet\u27s natural resources resulting in many well-known environmental trade-offs. In this study, we explored the impact of agriculture on a resource fundamental to life on Earth: terrestrial vegetation growth (net primary production; NPP). We demonstrate that agricultural conversion has reduced terrestrial NPP by ~7.0%. Increases in NPP due to agricultural conversion were observed only in areas receiving external inputs (i.e., irrigation and/or fertilization). NPP reductions were found for ~88% of agricultural lands, with the largest reductions observed in areas formerly occupied by tropical forests and savannas (~71% and ~66% reductions, respectively). Without policies that explicitly consider the impact of agricultural conversion on primary production, future demand-driven increases in agricultural output will likely continue to drive net declines in global terrestrial productivity, with potential detrimental consequences for net ecosystem carbon storage and subsequent climate warming

    Experimental Drought in a Tropical Rain Forest Increases Soil Carbon Dioxide Losses to the Atmosphere

    Get PDF
    Climate models predict precipitation changes for much of the humid tropics, yet few studies have investigated the potential consequences of drought on soil carbon (C) cycling in this important biome. In wet tropical forests, drought could stimulate soil respiration via overall reductions in soil anoxia, but previous research suggests that litter decomposition is positively correlated with high rainfall fluxes that move large quantities of dissolved organic matter (DOM) from the litter layer to the soil surface. Thus, reduced rainfall could also limit C delivery to the soil surface, reducing respiration rates. We conducted a throughfall manipulation experiment to investigate how 25% and 50% reductions in rainfall altered both C movement into soils and the effects of those DOM fluxes on soil respiration rates. In response to the experimental drought, soil respiration rates increased in both the −25% and −50% treatments. Throughfall fluxes were reduced by 26% and 55% in the −25% and −50% treatments, respectively. However, total DOM fluxes leached from the litter did not vary between treatments, because the concentrations of leached DOM reaching the soil surface increased in response to the simulated drought. Annual DOM concentrations averaged 7.7 ± 0.8, 11.2 ± 0.9, and 15.8 ± 1.2 mg C/L in the control, −25%, and −50% plots, respectively, and DOM concentrations were positively correlated with soil respiration rates. A laboratory incubation experiment confirmed the potential importance of DOM concentration on soil respiration rates, suggesting that this mechanism could contribute to the increase in CO2 fluxes observed in the reduced rainfall plots. Across all plots, the data suggested that soil CO2 fluxes were partially regulated by the magnitude and concentration of soluble C delivered to the soil, but also by soil moisture and soil oxygen availability. Together, our data suggest that declines in precipitation in tropical rain forests could drive higher CO2 fluxes to the atmosphere both via increased soil O2 availability and through responses to elevated DOM concentrations

    No Thermal Anomalies in the Mantle Transition Zone beneath an Incipient Continental Rift: Evidence from the First Receiver Function Study Across the Okavango Rift Zone, Botswana

    Get PDF
    Mechanisms leading to the initiation and early-stage development of continental rifts remain enigmatic, in spite of numerous studies. Among the various rifting models, which were developed mostly based on studies of mature rifts, far-field stresses originating from plate interactions (passive rifting) and nearby active mantle upwelling (active rifting) are commonly used to explain rift dynamics. Situated atop of the hypothesized African Superplume, the incipient Okavango Rift Zone (ORZ) of northern Botswana is ideal to investigate the role of mantle plumes in rift initiation and development, as well as the interaction between the upper and lower mantle. The ORZ developed within the Neoproterozoic Damara belt between the Congo Craton to the northwest and the Kalahari Craton to the southeast. Mantle structure and thermal status beneath the ORZ are poorly known, mostly due to a complete paucity of broadband seismic stations in the area. As a component of an interdisciplinary project funded by the United States National Science Foundation, a broad-band seismic array was deployed over a 2-yr period between mid-2012 and mid-2014 along a profile 756 km in length. Using P-to-S receiver functions (RFs) recorded by the stations, the 410 and 660 km discontinuities bordering the mantle transition zone (MTZ) are imaged for the first time. When a standard Earth model is used for the stacking of RFs, the apparent depths of both discontinuities beneath the Kalahari Craton are about 15 km shallower than those beneath the Congo Craton. Using teleseismic Pand S-wave traveltime residuals obtained by this study and lithospheric thickness estimated by previous studies, we conclude that the apparent shallowing is the result of a 100-150 km difference in the thickness of the lithosphere between the two cratons. Relative to the adjacent tectonically stable areas, no significant anomalies in the depth of the MTZ discontinuities or in teleseismic P- and S-wave traveltime residuals are found beneath the ORZ. These observations imply an absence of significant thermal anomalies in the MTZ and in the upper mantle beneath the incipient rift, ruling out the role of mantle plumes in the initiation of the ORZ. We propose that the initiation and development of the ORZ were the consequences of relative movements between the South African block and the rest of the African plate along a zone of lithospheric weakness between the Congo and Kalahari cratons. An area of thinner-than-normal MTZ is found at the SW corner of the study area. This anomaly, if confirmed by future studies, could suggest significant transferring of heat from the lower to the upper mantle
    corecore